
Computer Networks 239 (2024) 110163

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Programmable device deployment for efficient network function offloading
Huaqing Tu a,b,c,1, Gongming Zhao b,c,∗,2, Hongli Xu b,c,2, Chunming Qiao d,3

a Zhejiang Lab, China
b School of Computer Science and Technology, University of Science and Technology of China, China
c Suzhou Institute for Advanced Research, University of Science and Technology of China, China
d Department of Computer Science and Engineering, University at Buffalo, USA

A R T I C L E I N F O

Keywords:
Network function offloading
Programmable devices
Approximation algorithm
Network upgrade

A B S T R A C T

Network functions (NFs) play an important role in ensuring network security and performance. To improve
the NF throughput performance, an emerging method is to offload NFs on programmable devices, bringing
orders-of-magnitude improvements. A primary task for efficient NF offloading is how to deploy programmable
devices (e.g., programmable switches) for network upgrades. Although programmable switches have powerful
computing resources, their memory resources are usually limited, which poses a challenge of offloading stateful
NFs (e.g., load balancer, NAT) with a large-size memory requirement. A promising solution to break the
memory limitation is using external memory (e.g., on commodity servers) with the help of remote direct
memory access (RDMA) supported by SmartNIC. Therefore, this paper studies the problem of upgrading
networks by replacing legacy switches with programmable switches and equipping commodity servers with
SmartNICs so that NFs can be offloaded on programmable switches with external memory expansion. We
prove that this problem is NP-Hard, and there is no polynomial-time algorithm with an approximation ratio of
(1 − 𝜖) ⋅ lnℎ, where 𝜖 is an arbitrarily small value, and ℎ is the total number of requests in the network. Then
we design an efficient algorithm with an approximation ratio of 2.5 ⋅𝐻(𝑚 ⋅ 𝑛), where 𝑚 is the number of NF
types, 𝑛 is the maximum number of requests through a switch, and 𝐻(𝑚 ⋅ 𝑛) is the (𝑚 ⋅ 𝑛)th harmonic number.
The simulation results show that our solution can reduce the upgrade cost by about 70% compared with the
state-of-the-art approaches while preserving the same system throughput.
1. Introduction

As an intrinsic and fundamental part of today’s networks, network
functions (NFs) support a diverse set of functions, such as traffic accel-
erators, firewalls and IDSes [1,2]. Since network function virtualization
(NFV) [3–5] can significantly improve the scalability and flexibility of
resource management, NFs implemented in software have been widely
deployed in various networking scenarios, such as backbone networks,
and data center networks. However, software-based NFs on commodity
servers have limited processing capability, resulting in poor throughput
performance [6,7]. For example, the maximum throughput of an NF
implemented on a server is only about 10 Gbps [8], which makes it
hard to deal with ever-growing traffic.

To improve NF performance, recent researches [6,9,10] offload
NFs on programmable devices. The line-rate packet processing capac-
ity of novel programmable devices brings significant NF performance
improvement in throughput and forwarding latency compared with

∗ Corresponding author at: School of Computer Science and Technology, University of Science and Technology of China, China.
E-mail address: gmzhao@ustc.edu.cn (G. Zhao).

1 Student Member, IEEE.
2 Member, IEEE.
3 Fellow, IEEE.

implementing NFs in software on commodity servers. For example,
the system throughput and switch capacity of Edgecore Wedge 100BF-
32X are 3.2 Tbps [11] and 6.4 Tbps [12], respectively, which are
several hundred times as those of a software-based NF. A single switch
can process 5 billion packets per second [12], whereas a software-
based load balancer can process approximately 15 million packets per
second on a single server [13]. The high throughput of programmable
switches makes it more cost-effective than commodity servers for a
scenario of high traffic rate, even if commodity servers are cheaper than
programmable switches [8]. Due to these advantages of programmable
devices, the NF offloading problem has been studied for different
targets, such as minimizing end-to-end latency, maximizing service
chain acceptance ratio or system throughput [6,9]. However, previous
works mainly focus on the provisioning of NFs and assume that a set of
programmable devices has been deployed on given positions by default.
vailable online 22 December 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.110163
Received 8 May 2023; Received in revised form 13 December 2023; Accepted 20 D
ecember 2023

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:gmzhao@ustc.edu.cn
https://doi.org/10.1016/j.comnet.2023.110163
https://doi.org/10.1016/j.comnet.2023.110163
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.110163&domain=pdf

Computer Networks 239 (2024) 110163H. Tu et al.
In fact, a primary task for NF offloading is how to cost-efficiently deploy
programmable devices with the current legacy network.

Due to the ever-growing amounts of data traffic and stateful NFs,
when deploying programmable devices for network upgrades, we must
ensure that the deployed programmable devices provide sufficient com-
puting resources for NF processing, as well as memory resources for
storing flow state information. For stateful NFs, maintaining flow state
is the key to successfully processing and forwarding traffic. For exam-
ple, load balancers need to maintain per-flow server mapping tables so
that all the packets belonging to the same flow are forwarded to the
same application server [14].

One may think that deploying only programmable switches (e.g.,
Edgecore Wedge 100BF-32X [12]) is enough for NF offloading. How-
ever, programmable switches’ limited memory resources pose a chal-
lenge of offloading stateful NFs with a large-size memory requirement.
For example, the SRAM resource on a switch chip is only 10–100
MB [8,10,15], which is shared by routing and flow state management.
In practice, for stateful NFs, such as network address translation (NAT)
and load balancer, the status table size may be up to 525 MB [8], which
far exceeds the memory capacity of a programmable switch. Ignoring
the memory size limitation, existing work [16] of network upgrades
has to deploy more programmable devices so that the memory resource
needs of stateful NFs are satisfied, resulting in high network upgrade
cost, especially in large-scale networks.

Although evicting infrequently used entries can reuse scarce storage
resources, deleting entries is only applicable when the state of active
connections requires fewer storage resources than a programmable
switch has. Nevertheless, this situation may be rare, since the through-
put of programmable switches is very large. A promising way to break
the memory limitation of programmable switches is using external
memory (e.g., on commodity servers). The traditional method like
remote procedure call (RPC) [17] mechanisms realizing the commu-
nication between programmable switches and external servers will
introduce intolerable access delay (100 μs–500 μs) [17]. To this end,
this paper adopts remote direct memory access (RDMA) technique
supported by SmartNIC to enable programmable switches to lookup
state tables stored in servers’ memory within access delay of 1.8 μs–2.2
μs [8]. In this way, programmable switches mainly provide computing
resources, and commodity servers provide memory resources. More-
over, since the memory capacity of a server is usually greater than
500 GB, a server can provide memory expansion for multiple pro-
grammable switches. Therefore, although configuring SmartNICs incurs
a cost, it is still more economical than only using programmable
switches to offload network functions. This approach has been adopted
to enable programmable switches to retrieve state stored in servers and
achieve fault tolerance in case of switch failures [8,18].

Thus, to realize network upgrades and break the memory resource
limitation, we study the problem of not only deploying programmable
switches but also configuring SmartNICs for commodity servers. We
call this as programmable device deployment (PDD) problem, as both
smartNICs and programmable switches are programmable devices. It
should be noted that the PDD problem needs to determine: (1) which
legacy switches should be replaced with programmable switches; (2)
which servers should be upgraded with SmartNICs; and (3) which
programmable switches should an upgraded server provide memory
expansion for. Existing works [16,19] on network upgrades only con-
sider deploying servers or programmable switches to implement NFs
(explained in detail in Section 2.2). Thus, their methods cannot be directly
used to solve the PDD problem. To the best of our knowledge, this is
the first work that focuses on deploy both programmable switches and
SmartNICs to construct a programmable network with powerful com-
puting capacity on the premise of ensuring sufficient memory resources.
Note that the communication mechanism between programmable and
external memory has been thoroughly researched by TEA [8]. Thus, the
communication mechanism is not the focus of our work. We summarize
the contributions of this work as follows:
2

1. We propose the programmable device deployment (PDD) prob-
lem for efficient NF offloading and prove its NP-Hardness. We
also show its inapproximation ratio of (1 − 𝜖) ⋅ logℎ, where ℎ is
the total number of requests in a network, and 𝜖 belongs to [0,
1].

2. Then we design an algorithm with an approximation ratio of 2.5⋅
𝐻(𝑚⋅𝑛) based on the greedy 0–1 knapsack method, where 𝑛 is the
maximum number of requests passing through a programmable
switch, and 𝑚 is the number of NF’s types.

3. We evaluate the performance of the proposed algorithms
through extensive simulations. The results show that our solu-
tion can reduce the upgrade cost by about 70% compared with
the baselines while preserving the same system throughput.

The rest of this paper is organized as follows. Section 2 introduces
background and motivation. In Section 3, we formulate the PDD prob-
lem. Then we propose an approximate algorithm to solve it in Section 4.
Section 5 presents the simulation results and Section 6 reviews the
related works. Section 7 concludes the paper.

2. Background and motivation

2.1. Comparison of NF implementation methods

Currently, there are three different NF implementation methods.
Schematic diagrams of traffic processing for these methods are shown
in Fig. 1 .

• Implemented on commodity servers with the virtualization technol-
ogy. As shown in Fig. 1(a), traffic is forwarded from the switch
to the connected server for NF processing. Although computing
resources and memory resources are sufficient on commodity
servers, the disadvantage of this method is low throughput and
high processing delay, since NFs are implemented in software,
also called network function virtualization.

• Offloaded on programmable switches. Traffic is handled by NFs
simultaneously with packet processing on the programmable
switch without forwarding traffic to a server. Due to the power-
ful computing capacity, this method brings orders-of-magnitude
improvements in throughput and processing delay. However,
programmable switches’ limited memory resources present a
challenge for offloading stateful NFs, especially in large-scale
networks.

• Offloaded on programmable switches with memory expansion on
external servers [8]. This method is proposed to break the mem-
ory resource limitation in the second method. Specifically, pro-
grammable switches provide computing resources for NFs, and
external servers provide memory extension. Through RDMA tech-
nology supported by SmartNICs, programmable switches can ac-
cess servers’ memory without involving servers’ CPUs. Traffic is
processed by the programmable switch and the state information
of NFs is retrieved from an external server. It should be noted
that the external server does not process traffic but only provides
memory expansion.

In conclusion, compared with the former two NF implementation
methods, the third method provides both powerful computing resources
and sufficient memory resources. But the key step is how to deploy
programmable switches and SmartNICs for efficient NF processing.

2.2. Limitations of prior works

The network upgrade schemes for the first and second NF imple-
mentation methods have been extensively studied [16,19]. For the
first NF implementation method, Liu et al. [19] study how to deploy
commodity servers to build a scalable NFV-enabled network. For the
second NF implementation method, Xue et al. [16] study the shift from

Computer Networks 239 (2024) 110163H. Tu et al.
Fig. 1. Traffic processing of different NF implementation methods. Black solid lines are links. Red solid lines denote traffic flows. Green dotted lines indicate RDMA traffic. (a)
Commodity servers provide computing and memory resources for NFs. (b) Programmable switches provide computing and memory resources for NFs. (c) Programmable switches
provide computing resources and commodity servers provide memory resources. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
homogeneous NFV networks to heterogeneous ones by deploying pro-
grammable devices. In the second NF implementation method, the PDD
problem needs to answer: (1) which legacy switches should be replaced
with programmable switches; (2) which servers should be upgraded
with SmartNICs; and (3) which programmable switches should an up-
graded server provide memory expansion for. The algorithms proposed
by Liu et al. [19] and Xue et al. [16] cannot answer these questions, so
their method cannot be used to solve the PDD problem. Although Kim
et al. [8] have designed a mechanism for programmable switches to
access storage resources of external servers, they do not present a cost-
efficiently network upgrade algorithm to address the three questions
raised by PDD. To the best of our knowledge, this is the first work on
network upgrade algorithm for the third NF implementation method.

3. Preliminaries

3.1. Network model

The original (or traditional) network contains two types of devices,
i.e., legacy switches and servers. We use 𝑉 and 𝑆 to denote the legacy
switch set and server set, respectively. 𝑉 and 𝑆 can be obtained
according to the current network topology. Servers are interconnected
by these legacy switches. We assume that there is a set of NF types, such
as Proxy, Firewall and IDS. Let  denote the NF type set. Note that,
some sophisticated network function operations like buffering, pay-
load encryption and loop are difficult to implement on programmable
switches, since the existing programmable switches are designed to
process packet in a pipeline manner. [6]. As a result, only certain
types of NFs can be offloaded on programmable switches. For ease of
expression, if an NF can be offloaded on programmable switches, we
call it offloadable. We use  ′ ⊆  to indicate the offloadable NF set.

To transform a traditional network into a programmable network,
we collect the long-term statistics of all requests in the traditional
network. For security and performance reasons, requests need to be
processed orderly by multiple NFs, which is also called as service
function chain (SFC) [19]. For clarity, we identify a request by three
elements <source, destination, SFC requirement>. Through long-term
statistics with traffic measurement methods (e.g., sketch [20]), for each
request 𝛾, we obtain the estimated traffic size denoted as 𝜃𝛾 and the
set of NFs (say, 𝛾) specified in the SFC requirement. For instance,
𝛾 = {Firewall, NAT, Proxy}, if the SFC requirement of request 𝛾 is
Firewall-NAT-Proxy. Let  ′

𝛾 ⊆ 𝛾 be the set of offloadable NF types in
the SFC requirement. Moreover, we denote the request set as 𝛤 . The
symbols appearing in Section 3 are summarized in Table 1. Besides,
the important abbreviations used in this paper are listed in Table 2

3.2. Problem formulation

This section presents PDD’s problem definition. Let the binary vari-
able 𝑥𝑣 indicate whether legacy switch 𝑣 ∈ 𝑉 is replaced with a
programmable switch or not and the binary variable 𝑦𝑠 denote if server
𝑠 ∈ 𝑆 is configured with a SmartNIC or not. In addition, we adopt
3

𝛼 to express the price of a programmable switch and 𝛽 to denote the
price of configuring a SmartNIC for a server. The values of 𝛼 and 𝛽
are determined by the network administrator when purchasing network
equipment. The optimization goal of the PDD problem is to minimize a
network’s upgrade cost, while satisfying the computing resource capac-
ity constraints on programmable switches, memory resource capacity
constraints on servers and the offloaded NFs’ processing capacity.

For NF offloading, programmable switches mainly provide comput-
ing resources, since NFs’ memory needs can be satisfied by external
servers. Let the binary variable 𝑧𝑓𝑣 denote whether NF with type 𝑓 ∈
 ′ will be offloaded on programmable switch 𝑣 or not and 𝛿𝑓𝑣 de-
notes the resource consumptions of NF with type 𝑓 on programmable
switch 𝑣. Although it is hard to specify which specific action units
(or SRAM/TCAM, etc.) are allocated to NF 𝑓 , we can set the value
of 𝛿𝑓𝑣 according to compilation results by employing a static method
via the compiler for programmable switch [6]. Note that 𝛿𝑓𝑣 does not
specify exactly which action units (or SRAM/TCAM, etc.) are allocated
to an NF. It represents the amount of resources that an NF with type
𝑓 will consume on switch 𝑣. This is helpful for deploying NFs in an
appropriate position without violating the resource constraints of pro-
grammable switches. The resource needs (including computation and
storage) of offloaded NFs on programmable switch 𝑣 cannot exceed the
switch’s resource capacity (denoted as 𝐶𝑣), which can be set according
to the parameters of the purchased network equipment. In order to
make the upgrade process from traditional networks to programmable
networks more practical, this paper adopts an architecture in which
a commodity server’s DRAM can be an external storage space for
programmable switches. This architecture was first proposed by [8].
In this architecture, all states of an NF are held in an external server,
and the storage on the programmable switch is mainly used as a
cache to improve the speed of accessing states. Although the storage
resources consumed by the global state of an NF will change with the
number of connections [21,22], its storage space size as a cache on the
programmable switch can be fixed. Thus, storage resource requirements
can be specified in 𝛿𝑓𝑣 . The external servers provide memory resources
for programmable switches. Though the storage resources consumption
of a stateful NF changes over time while the NF is running, when
upgrading networks and offloading NFs, we set 𝜙𝑓 as a constant in
order to better determine the deployment of programmable switches
and SmartNICs and the offloading of NFs. Since the storage resources
on commodity servers are much more than those on programmable
switches, the value of 𝜙𝑓 is set to be slightly higher than the actual
amount of resources required by network function 𝑓 . For example, a
network administrator observes that over a period of time, a stateful
firewall only saved a maximum of eight million connections at any
moment. When offloading a stateful firewall on a programmable switch,
the network administrator reserves storage resources that can save ten
million connections on a commodity server to deal with emergencies.
We adopt 𝐶𝑠 to indicate the memory resource capacity of server 𝑠.
The amount of memory resources (say, 𝜋𝑣) required by programmable
switch 𝑣 depends on the offloaded NFs. Thus, we have 𝜋𝑣 =

∑

𝑓∈ ′ 𝑧𝑓𝑣 ⋅
𝜙 , where 𝜙 is the memory needs of NF with type 𝑓 .
𝑓 𝑓

Computer Networks 239 (2024) 110163H. Tu et al.

c
P
t
o
t
N
m
s
t
r
b
r
t
𝑣
s
w
𝜎
v
f
e
r
o
s
i
a

m

Table 1
Key notations.

Parameters Description

𝑉 A legacy switch set
𝑆 A server set
𝛼 The price of a programmable switch
𝛽 The price of a SmartNIC
 An NF type set
 ′ An offloadable NF type set
𝛤 A request set
𝛾 The NF type set required by request 𝛾
 ′
𝛾 The offloadable NF type set require by request 𝛾
𝜃𝛾 The traffic size of request 𝛾
𝐶𝑣 The resource capacity of programmable switch 𝑣

𝐶𝑓
𝑣 The processing capacity of NF with type 𝑓 ∈ 𝐹 ′ offloaded on programmable switch 𝑣

𝛿𝑓𝑣 The resource consumption of NF with type 𝑓 when offloaded on programmable switch 𝑣

𝑥𝑣 Whether legacy switch 𝑣 ∈ 𝑉 is replaced with a programmable switch or not
𝑦𝑠 Whether server 𝑠 is configured with a SmartNIC or not
𝑧𝑓𝑣 Whether NF with type 𝑓 ∈ 𝐹 is offloaded on switch 𝑣 ∈ 𝑉 or not
𝑞𝑠𝑣 Whether switch 𝑣 ∈ 𝑉 selects server 𝑠 ∈ 𝑆 to expand memory or not
𝑤𝑓
𝑣,𝛾 Whether 𝛾 is processed by the network function 𝑓 offloaded on switch 𝑣 or not
𝑆

o
p
𝛾
i
s
l
e
N
c
s
c
e
i
m
e
t

t
m
t
o

Table 2
Key abbreviations.

Abbreviations Description

NFV Network Function Virtualization
NF Network Function
RDMA Remote Direct Memory Access
NAT Network Address Translation
SFC Service Function Chain
PDD Programmable Device Deployment
KPBP Knapsack and Bin-Packing Algorithm for PDD

NOTS NF Offloading and Traffic Scheduling
RBNS Rounding-based NF Offloading and Traffic Scheduling Algorithm

In addition, NF 𝑓 offloaded on programmable switch 𝑣 has a pro-
essing capacity denoted as 𝐶𝑓𝑣 . In order to make the model of the
DD problem more practical, we use the following steps to determine
he value of 𝐶𝑓𝑣 . First, for each NF 𝑓 ∈ 𝐹 ′, where 𝐹 ′ is a set of
ffloadable NFs, we implement it on programmable switch 𝑣. Then we
est the maximum throughput of NF 𝑓 and set this to the value of 𝐶𝑓𝑣 .
ote that recirculation occurs when a packet traverses through two or
ore pipelines, which will degrade the throughput of programmable

witches. The above method for determining the value of 𝐶𝑓𝑣 has
aken into account the possible throughput degradation caused by
ecirculation. Each request has a candidate switch set 𝑉𝛾 and it will only
e processed by NFs offloaded on the switches in 𝑉𝛾 for guaranteeing
outing performance. The definition of 𝑉𝛾 is as follows. Let 𝜏(𝑣, 𝑣′) be
he hop count of the shortest route between two legacy switches 𝑣′ and
in a network. We term 𝑣′′ a feasible switch of request 𝛾 with source

witch 𝑠 and destination 𝑡, if and only if 𝜏(𝑠, 𝑣′′) + 𝜏(𝑣′′, 𝑡) ≤ 𝜎 ⋅ 𝜏(𝑠, 𝑡),
here 𝜎 ≥ 1 is the strech [23]. Then, we use 𝑉𝛾 = {𝑣′′|𝜏(𝑠, 𝑣′′)+𝜏(𝑣′′, 𝑡) ≤
⋅ 𝜏(𝑠, 𝑡)} to denote the feasible switch set of request 𝛾. Let the binary
ariable 𝑤𝑓𝑣,𝛾 denote whether request 𝛾 is processed by the network
unction 𝑓 offloaded on switch 𝑣 ∈ 𝑉𝛾 or not. Note that, through
fficient routing algorithms [24,25], the NFs’ sequence specified in SFC
equirements can be meet. Besides, the resource consumption of NF
ffloading on programmable switches will not be affected by the NF’s
equence. Thus, similar to [19], since NF processing order will not
mpact the upgrade solution, we do not consider it in this paper. With
bove notations, the PDD problem is formulated as follows:

in
∑

𝛼 ⋅ 𝑥𝑣 +
∑

𝛽 ⋅ 𝑦𝑠
4

𝑣∈𝑉 𝑠∈𝑆
p

.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑥𝑣 ≥ 𝑧𝑓𝑣 , ∀𝑣 ∈ 𝑉 , 𝑓 ∈  ′

𝑧𝑓𝑣 ≥ 𝑤𝑓𝑣,𝛾 , ∀𝛾 ∈ 𝛤 , 𝑣 ∈ 𝑉𝛾 , 𝑓 ∈  ′
𝛾

∑

𝑣∈𝑉
𝑤𝑓𝑣,𝛾 ≥ 1, ∀𝛾 ∈ 𝛤 , 𝑓 ∈  ′

𝛾

∑

𝑓∈ ′
𝑧𝑓𝑣 ⋅ 𝛿𝑓𝑣 ≤ 𝐶𝑣, ∀𝑣 ∈ 𝑉

∑

𝛾∈𝛤∶𝑓∈ ′
𝛾

𝑤𝑓𝑣,𝛾 ⋅ 𝜃𝛾 ≤ 𝐶𝑓𝑣 , ∀𝑓 ∈  ′, 𝑣 ∈ 𝑉

𝑦𝑠 ≥ 𝑞𝑠𝑣, ∀𝑣 ∈ 𝑉 , 𝑠 ∈ 𝑆
∑

𝑠∈𝑆
𝑞𝑠𝑣 ≥ 𝑥𝑣, ∀𝑣 ∈ 𝑉

∑

𝑣∈𝑉
𝑞𝑠𝑣 ⋅ 𝜋𝑣 ≤ 𝐶𝑠, ∀𝑠 ∈ 𝑆

𝜋𝑣 =
∑

𝑓∈ ′
𝑧𝑓𝑣 ⋅ 𝜙𝑓 , ∀𝑣 ∈ 𝑉

𝑥𝑣, 𝑦𝑠, 𝑧
𝑓
𝑣 , 𝑞𝑠𝑣, 𝑤

𝑓
𝑣,𝛾 ∈ {0, 1}, ∀𝑣, 𝑠, 𝑓 , 𝛾

(1)

The first set of inequalities indicates that network function 𝑓 is
ffloaded on switch 𝑣 if and only if the switch 𝑣 is replaced with a
rogrammable switch. The second inequality set means that request
can be processed by network function 𝑓 on switch 𝑣 if and only

f network function 𝑓 is offloaded to switch 𝑣. The third inequality
et denotes that request 𝛾 should be processed by NF 𝑓 ∈ 𝛾 at
east once to satisfy its SFC requirement. The fourth set of inequalities
xpresses programmable switches computing resource constraints for
F offloading. The fifth inequality set means the NF processing capacity
onstraints. The sixth set of inequalities means server 𝑠 ∈ 𝑆 can be
elected to expand the memory of switch 𝑣 if and only if server 𝑠 is
onfigured with a SmartNIC. The seventh set of inequalities indicates
ach programmable switch will choose at least one server to expand
ts memory capacity. The eighth set of inequalities expresses servers’
emory resource constraints. The ninth set of equalities defines the

xternal memory needs of switch 𝑣. Our objective is to minimize the
otal upgrade cost, i.e., ∑𝑣∈𝑉 𝛼 ⋅ 𝑥𝑣 +

∑

𝑠∈𝑆 𝛽 ⋅ 𝑦𝑠.
This paper focuses on efficient network function offloading through

he deployment of programmable switches and SmartNICs with mini-
al costs for network upgrades. Thus, our main focus is on modeling

he resource consumption of NF offloading and the deployment cost
f programmable switches and SmartNICs. The proposed model in this

aper is based on the TEA architecture [8]. However, as mentioned

Computer Networks 239 (2024) 110163H. Tu et al.

e
t
i
c
s
t
c
a
i
s
e
s
T

T
p
t

P
h
i
n
L
a
b
b
i
𝜖

4

p
p
i
e
p

4

k
a
a
T
L
𝑓
r

1

1
2
2
2

2
2

2
2

p
w
1
w
f
t
s
(
s
t
t
(

in [26], TEA faces several challenges such as only supporting address-
based memory access, performance degradation caused by frequent
updates in the remote memory, potential packet loss between the
switch and the remote memory, the complex interaction between gen-
eral data plane applications and the remote memory. Therefore, the
model proposed in this paper based on TEA may also encounter these
issues. Despite these challenges, TEA offers cost-effective and flexible
solutions by leveraging existing resources in commodity servers. It
overcomes the memory resource limitations of programmable switches,
enabling the offloading of network functions with large status tables.
Hence, the model proposed in this paper is based on TEA.

Theorem 1. The PDD problem is NP-hard.

Proof. We will show that the Minimum Set Cover (MSC) problem [27]
is a special case of the problem studied here. We first present an
instance of MSC: let 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑛} denote the collection of 𝑛
lements and 𝐶 = {𝐸𝑖 ⊆ 𝐸, 𝑖 = 1, 2,… , 𝑚}. The MSC problem attempts
o construct a minimum set 𝐶 ′ ⊆ 𝐶 so that a element 𝑒 ∈ 𝐸 is
ncluded in as least one set in 𝐶 ′. Then, to prove PDD’s NP-hardness, we
onstruct a special case of PDD. Assume that: (1) each programmable
witch has unlimited computing power; (2) the network has only one
ype of NF; (3) each server has been equipped with a SmartNIC, so the
ost of SmartNIC is zero. In this case, we can think of each request
s an element and each set of requests passing through a same switch
s abstracted as a set in 𝐶. Similar to MSC, PDD try to replace legacy
witches with minimum number of programmable switches while cov-
ring all requests. Therefore, we can conclude that the PDD problem’s
pecial instance described above becomes the standard MSC problem.
he PDD problem is also NP-Hard, since MSC is NP-hard. □

heorem 2. There does not exist a polynomial time algorithm for the PDD
roblem with an approximation ratio better than (1−𝜖) ⋅ lnℎ, where ℎ is the
otal number of requests, for any 𝜖 > 0, unless 𝑃 = 𝑁𝑃 .

roof. The previous works presented by Feige [28], Raz and Safra [29]
ave proved that there is no polynomial time algorithm whose approx-
mate ratio is ln𝑚 ⋅ (1 − 𝜖) for the MSC problem, where 𝑚 denotes the
umber of elements in the MSC problem, for any 𝜖 > 0, unless 𝑃 = 𝑁𝑃 .
et ℎ = |𝛤 | be the size of request set in a network. Because MSC is
special case of PDD, if the PDD problem has an algorithm with a

etter approximation ratio than lnℎ ⋅ (1 − 𝜖), this algorithm can also
e adopted for the MSC problem. However, it contradicts the previous
napproximation analysis. Therefore, we can conclude that, for any
> 0, the PDD problem has an inapproximation ratio of lnℎ⋅(1−𝜖). □

. Algorithm for programmable device deployment

Due to NP-Hardness, the PDD problem cannot be optimally solved in
olynomial time. An approximation algorithm called KPBP for the PDD
roblem is designed for the PDD problem (Section 4.1). We analyze
ts approximation performance (Section 4.2). Moreover, we present the
xtension to network function offloading and traffic scheduling when
rogrammable switches and SmartNICs are deployed (Section 4.3).

.1. Algorithm description

In this section, we present an algorithm, called KPBP, based on
napsack and bin packing to minimize the upgrade cost. The KPBP
lgorithm consists of two steps formally described in Algorithm 1. The
lgorithm chooses a set of legacy switches to upgrade in the first step.
o satisfy SFC requirements, each request should traverse specific NFs.
et 𝛤 𝑓 be the set of requests, which should be handled by NF with type
∈  ′, and the traffic size of 𝛤 𝑓 is denoted as 𝑔𝑓 . Besides, we use 𝑈𝑓

𝑣 to
epresent the request set that has not been uncovered by NF with type 𝑓
5

Algorithm 1 KPBP: Knapsack and Bin-Packing Algorithm for PDD
1: 𝑉 ′ ← ∅, 𝑆′ ← ∅, 𝑃𝑣 ← ∅
2: Step 1: Choose Legacy Switches to Upgrade
3: for each NF type 𝑓 ∈  ′ do
4: 𝑔𝑓 ← |𝛤 𝑓 |
5: for each legacy switch 𝑣 ∈ 𝑉 do
6: 𝑈𝑓

𝑣 ← 𝛤 𝑓𝑣
7: end for
8: end for
9: while 𝑔𝑓 > 0,∀𝑓 ∈  ′ do

10: for each legacy switch 𝑣 ∈ 𝑉 − 𝑉 ′ do
11: Choose an NF set using the KP algorithm, 𝑣 ← 𝐾𝑃 (𝑣)
12: end for
13: Replace a legacy switch 𝑣 with a programmable switch which has

the maximum profit ∑𝑓∈𝑣 𝜓
𝑓
𝑣

14: 𝑉 ′ ← 𝑉 ′ ∪ {𝑣}
15: for each NF type 𝑓 ∈ 𝑣 do
16: 𝑔𝑓 ← 𝑔𝑓 − |𝑈𝑓

𝑣 |

7: for each legacy switch 𝑣𝑖 ∈ 𝑉 − 𝑉 ′ do
18: 𝑈𝑓

𝑣𝑖 ← 𝑈𝑓
𝑣𝑖 − 𝑈

𝑓
𝑣

9: end for
0: end for
1: end while
2: Step 2: Select Servers to Upgrade based on Bin Packing Method

3: for 𝑣 ∈ 𝑉 ′ do
4: Compute the memory consumption of NFs offloaded on switch 𝑣

with 𝑏𝑣 ←
∑

𝑓∈𝑣 𝜙𝑓
5: end for
6: Rearrange the switch 𝑣 ∈ 𝑉 ′ in the decreasing order with memory

consumption 𝑏𝑣
27: for 𝑣 ∈ 𝑉 ′ do
28: Use first-fit bin packing algorithm to determine the minimum

number of upgraded servers
29: end for
30: Adopts P-Center algorithm to determine the location of upgraded

servers

on switch 𝑣 (Line 3–6). The first step goes through a series of iterations.
The KP algorithm is performed by the KPBP algorithm in each iteration
to construct a chosen NF set (say, 𝑣) for each switch 𝑣 (Line 8–9).
The detail of the KP algorithm will be presented in the next paragraph.
Then, the KPBP algorithm selects a switch 𝑣 which has the maximum
rofit to upgrade (Line 10–11). After determining a legacy switch that
ill be upgraded, KPBP updates the uncovered request set (Line 12–
5). Specifically, for each NF with type 𝑓 offloaded on switch 𝑣, KPBP
ill update the requests that is covered by 𝑓 (Line 12–13). In addition,

or those switches that have not been determined to be upgraded,
he request set that has not been uncovered should also be updated,
ince some of them may be covered by the newly upgraded switch
Line 14–15). Until all requests are covered by the NFs on upgraded
witches, the first step will end. Based on the switch set that needs
o be upgraded through the first step, the second step selects servers
o upgrade. The KPBP algorithm computes the memory consumption
say, 𝑏𝑣) of NFs offloaded on switch 𝑣, and rearrange the switch 𝑣 ∈
𝑉 ′ in the decreasing order with memory consumption 𝑏𝑣. Using bin
packing algorithm, the minimum number of upgraded servers can be
determined. At last, KPBP adopts P-Center algorithm [30] to determine
the location of upgraded servers so that the maximum distance between
upgrade servers and switches is minimized.

Now, we introduce the KP algorithm, which is used to decide the
NF set offloaded on switch 𝑣 while maximizing the request set covered
by these NFs with the assumption that the legacy switch 𝑣 has been

upgraded to a programmable one. When NF with type 𝑓 is offloaded

Computer Networks 239 (2024) 110163H. Tu et al.

1
1

a
p
2

s
o
o
𝜉
o
a
w
𝜉
s
I
i
t
T
v
s
t

T
{

2

P
𝑘
b
𝜉
t
w

2

m
𝑒
𝑒

r
t
u

T
2

P
a

Algorithm 2 KP: 0-1 Knapsack Algorithm on Switch 𝑣

1: 𝑣 ← ∅, 𝐴𝑓𝑣 ← ∅, 𝑎𝑓𝑣 ← 0,∀𝑓 ∈  ′

2: for each 𝑓 ∈  ′ do
3: Sort the descending request 𝛾 ∈ 𝑈𝑓

𝑣 according to the traffic size
𝜃𝛾

4: for each request 𝛾 ∈ 𝑈𝑓
𝑣 do

5: if ∑𝛾∈𝐴𝑓𝑣
𝜃𝛾 ≤ 𝐶𝑓𝑣 then

6: 𝐴𝑓𝑣 ← 𝐴𝑓𝑣 ∪ {𝛾}
7: end if
8: end for
9: 𝑎𝑓𝑣 ←

∑

𝛾∈𝐴𝑓𝑣
𝜃𝛾

10: end for
11: Rearrange the NF with type 𝑓 ∈  ′ in the decreasing order with

the unit profit value 𝑎𝑓𝑣
𝛿𝑓𝑣

2: for 𝑓 ∈  ′ do
3: if ∑𝑓∈𝑣 𝛿

𝑣
𝑓 ≤ 𝐶𝑣 then

14: 𝑣 ← 𝑣 ∪ {𝑓}
15: end if
16: end for
17: return 𝑣

on switch 𝑣, some requests (i.e., a subset of 𝑈𝑓
𝑣) will be covered by

this NF while satisfying the switch’s and NF’s capacity constraints.
Since this process is similar to the 0–1 knapsack problem [31,32],
this case is regarded as a 0–1 knapsack problem [31,32]. Specifically,
the joint consideration of switch’s and NF’s processing capacity is the
knapsack capacity. The traffic size of requests covered by the NF is the
item’s profit and the offloading cost of the NF is the item size. The KP
algorithm’s goal is maximizing the total traffic size of requests that are
handled by these NFs offloaded on the switch, similar to the knapsack
problem.

Algorithm 2 describes the details of the KP algorithm. Let 𝑣 be the
NF set offloaded on switch 𝑣. Let 𝐴𝑓𝑣 be request set determined to be
handled by NF with type of 𝑓 on switch 𝑣. Moreover, 𝑎𝑓𝑣 is the total
traffic size of requests in 𝐴𝑓𝑣 . At the beginning, the KP algorithm first
initializes 𝑣, 𝐴

𝑓
𝑣 and 𝑎𝑓𝑣 (Line 1). Then, the algorithm sort descending

request 𝛾 ∈ 𝑈𝑓
𝑣 according to the traffic size 𝜃𝛾 , and puts these requests

into the set 𝐴𝑓𝑣 under the constraints of NF processing capacity on
switch 𝑣 (Line 2–7). After the set of requests processed by each type of
NF is determined, the KP algorithm sorts the decreasing NF with type
𝑓 ∈  ′ according the unit profit value 𝑎𝑓𝑣

𝛿𝑣𝑓
, where 𝛿𝑓𝑣 is the offloading

cost of NF with type 𝑓 on switch 𝑣 (Line 8). At last, the KP algorithm
greedily chooses NF that has the maximum unit profit while satisfying
the switch processing capacity to determine the set of NFs offloaded on
the programmable switch 𝑣 (Line 9–11). The key code of the proposed
algorithm is publicly available on GitHub.4

4.2. Performance analysis for KPBP

This section presents KPBP’s approximation performance and ana-
lyze its time complexity.

The first step of the KPBP algorithm is to devise the set of legacy
switches that will be upgraded. It consists of multiple iterations (say
{1, 2,… , 𝑡}), and in each iteration 𝑘 ∈ {1, 2,… , 𝑡}, a legacy switch 𝑣(𝑘)
will be selected with the help of the KP algorithm. It is proved that for
the 0–1 knapsack problem, KP has an approximation ratio of 2 [33].
Based on [33], we give the following theorem.

4 https://github.com/joytuhq/Programmable-Device-Deployment
6

2

Theorem 3. The following inequality holds for each iteration 𝑘 ∈
{1, 2,… , 𝑡}.

2 ⋅ 𝑑𝑣(𝑘)(𝑘) ≥ 𝑏𝑖(𝑘) (2)

In the 𝑘th iteration, 𝑏𝑖(𝑘) denote the profit on switch 𝑣𝑖 computed by KPBP
and 𝑑𝑣(𝑘)(𝑘) is the approximation result on the selected switch 𝑣𝑘 by KP.

Proof. In each iteration of KPBP, the KP algorithm is applied for
those switches which have not been chosen to upgrade. Let 𝑝𝑖(𝑘) be
the optimal profit of KPBP on switch 𝑣𝑖 through the KP algorithm in
the 𝑘th iteration. Thus, we have 𝑏𝑖(𝑘) ≤ 𝑝𝑖(𝑘). It is straightforward that
2 ⋅ 𝑑𝑖(𝑘) ≥ 𝑝𝑖(𝑘) because the optimal solution of KP on switch 𝑣𝑖 is 𝑑𝑖(𝑘)
and KP has an approximation ratio of 2. In the 𝑘th iteration, KPBP
will select a switch (say, 𝑣(𝑘)). We have 𝑑𝑣(𝑘)(𝑘) ≥ 𝑑𝑖(𝑘), since KPBP
lways replaces a legacy switch that has the maximum profit with a
rogrammable switch. Therefore, it is concluded that ∀𝑘 ∈ {1, 2,… , 𝑡},
⋅ 𝑑𝑣(𝑘)(𝑘) ≥ 𝑏𝑖(𝑘). □

Assume that the optimal result and KPBP will upgrade 𝑙 and 𝑡 legacy
witches, respectively. After the 𝑘th iteration, let 𝜉𝑓 (𝑘) be the number
f requests that will be handled by NF with type 𝑓 . The total number
f requests which will be covered by all kinds of NFs is denoted as
(𝑘). That is, 𝜉(𝑘) =

∑

𝑓∈𝐹 ′ 𝜉𝑓 (𝑘). Let 𝐹 ∗
𝑖 be set of NFs implemented

n the programmable switch 𝑣𝑖 in the optimal solution. In addition,
fter the 𝑘th iteration, the request set that will be processed by NF
ith type 𝑓 is denoted as 𝐵𝑓𝑖 . Before iteration, i.e. 𝑘 = 0, it follows
(0) =

∑𝑙
𝑖=1

∑

𝑓∈𝐹 ∗
𝑖
|𝐵𝑓𝑖 |. In the following, we demonstrate that the

elected switches’ overall profit will not more than a specific value.
t is easy to find that, if a request set is covered by 𝑗 types of NFs,
t is covered 𝑗 times. An integer variable is used to defined the cover
imes of requests, i.e., 𝑢𝑖 ∈ {1, 2,… ,

∑

𝑓∈𝐹 ∗
𝑖
|𝐵𝑓𝑖 |} for ∀𝑖 ∈ {1, 2..., 𝑙}.

herefore, we have 𝜉(0) = ∑𝑙
𝑖=1

∑

𝑓∈𝐹 ∗
𝑖
|𝐵𝑓𝑖 |. It may include duplicated

alues. After that, these integer variables are sorted into a ascending
equence. For simplicity, 𝑒𝑥 is used to indicate these values and we set
hem as 𝑒1 ≤ 𝑒2 ≤ ... ≤ 𝑒𝜉(0).

heorem 4. We have the following inequality for each iteration 𝑘 ∈
1, 2,… , 𝑡}

⋅ 𝑑𝑣(𝑘)(𝑘) ≥ 𝑒𝜉(𝑘) (3)

roof. The requests will be incrementally covered 𝜉(𝑘) times after the
th iteration. In the optimal solution, each type of NF’s cover ratio can
e guaranteed, if the KPBP algorithm covers all rest requests. That is,
(𝑘) ≤

∑𝑙
𝑖=1 𝑏𝑖(𝑘). The definition of 𝑏𝑖(𝑘) and 𝑒𝑥 points that 𝑏𝑖(𝑘) is more

han 𝑒𝑥. That is, for all 𝑖 ∈ {1, 2,… , 𝑙}, 𝑒𝑥 ∈ {1, 2,… , 𝑏𝑖(𝑘)}. Combined
ith Theorem 3, it follows

⋅ 𝑑𝑣(𝑘)(𝑘) ≥ 𝑒𝑥 (4)

There are at least 𝜉(𝑘) indices 𝑥 meeting Eq. (4), due to 𝑏𝑖(𝑘) ≤
ax𝑠≤𝑙

∑

𝑓∈𝐹 ′ |𝐵𝑓𝑠 | and ∑𝑙
𝑖=1 𝑏𝑖(𝑘) ≥ 𝜉(𝑘), ∀𝑖 ∈ {1, 2,… , 𝑙}. Combining

1 ≤ 𝑒2 ≤ ... ≤ 𝑒𝜉(0), we can derive that, ∀𝑘 ∈ {1, 2,… , 𝑡}, 2 ⋅ 𝑑𝑣(𝑘)(𝑘) ≥
𝜉(𝑘). □

For simplicity, we use 𝑛 and 𝑚 to indicate the maximum number of
equests passing through a switch and the size of  ′, respectively. In
he following, we give the approximation performance for the cost of
pgraded switches through the KPBP algorithm.

heorem 5. The proposed KPBP algorithm has an approximation of
⋅𝐻(𝑚 ⋅ 𝑛) for the cost of upgrading the legacy switches.

roof. We have the following inequality for each 𝑘 ∈ {1, 2,… , 𝑡}
ccording to Theorem 4.
⋅ 𝑑𝑣(𝑘)(𝑘) ≥ 𝑒𝜉(𝑘) ≥ 𝑒𝜉(𝑘)−1 ≥ ⋯ ≥ 𝑒𝜉(𝑘+1)+1

https://github.com/joytuhq/Programmable-Device-Deployment

Computer Networks 239 (2024) 110163H. Tu et al.

1

C

𝑡

𝐻

S

⇒
1

2 ⋅ 𝑑𝑣(𝑘)(𝑘)
≤ 1
𝑒𝜉(𝑘)

≤ 1
𝑒𝜉(𝑘)−1

≤ ... ≤ 1
𝑒𝜉(𝑘+1)+1

(5)

Due to 𝑑𝑣(𝑘)(𝑘) = 𝜉(𝑘) − 𝜉(𝑘 + 1), we have

≤ 2 ⋅
(

1
𝑒𝜉(𝑘)

+ 1
𝑒𝜉(𝑘)−1

+⋯ + 1
𝑒𝜉(𝑘+1)+1

)

(6)

ombining the above inequalities, we have

≤ 2 ⋅
(

1
𝑒𝜉(1)

+⋯ + 1
𝑒1

)

≤ 2 ⋅
(

1
𝑒𝜉(0)

+⋯ + 1
𝑒1

)

= 2 ⋅
𝑙

∑

𝑖=1
𝐻(

∑

𝑓∈𝐹 ∗
𝑖

|𝐵𝑓𝑖 |) ≤ 2 ⋅ 𝑙 ⋅𝐻(𝑚 ⋅ 𝑛) (7)

(𝑚 ⋅ 𝑛) is the (𝑚 ⋅ 𝑛)th harmonic number defined as 𝐻(𝑚 ⋅ 𝑛) = 1 +
1
2 + ⋯ + 1

𝑚⋅𝑛 ≈ log(𝑚 ⋅ 𝑛). The third equation of Eq. (7) holds due to
the definition of 𝑒𝑥 and the last inequality of Eq. (7) holds is because
∑∗
𝑓∈𝑖

|𝐵𝑓𝑖 | ≤
∑

𝑓∈ |𝛤 𝑓𝑣𝑖 | ≤ 𝑚 ⋅ 𝑛. So we have

𝑡
𝑙
≤ 2 ⋅𝐻(𝑚 ⋅ 𝑛) (8)

Thus, we conclude that the KPBP algorithm has an approximation of
2 ⋅𝐻(𝑚 ⋅ 𝑛) for the cost of upgrading the legacy switches. □

Theorem 6. The proposed KPBP algorithm has an approximation of
2.5 ⋅𝐻(𝑚 ⋅ 𝑛) for the cost of upgrading switches and servers.

Proof. Let 𝑙1 and 𝑡1 be the number of servers that will be upgraded
by the optimal solution and KPBP. Besides, we use 𝑡2 to indicate the
number of servers that will be upgraded through optimal bin packing
scheme given 𝑡 programmable switches. The previous work [34] has
shown that the offline bin packing algorithm can achieve an approxi-
mation of 1.25. Thus, according to the definition of 𝑡1 and 𝑡2, we have
𝑡1 ≤ 1.25 ⋅ 𝑡2. Then, combining with Theorem 5, it follows

𝑡1 ≤ 1.25 ⋅ 𝑡2 ≤ 1.25 ⋅ 2 ⋅𝐻(𝑚 ⋅ 𝑛) ⋅ 𝑙1 (9)

So we have
𝑡1
𝑙1

≤ 2.5 ⋅𝐻(𝑚 ⋅ 𝑛) (10)

It means that for the cost of upgrading servers, the KPBP algorithm can
achieve 2.5 ⋅𝐻(𝑚 ⋅𝑛)-approximation. Then, combining with Eqs. (8) and
(10), it follows

𝛼 ⋅ 𝑡 + 𝛽 ⋅ 𝑡1 ≤ 𝛼 ⋅ 2 ⋅ 𝑙 ⋅𝐻(𝑚 ⋅ 𝑛) + 𝛽 ⋅ 2.5 ⋅𝐻(𝑚 ⋅ 𝑛)

≤ 2.5 ⋅𝐻(𝑚 ⋅ 𝑛) ⋅ (𝛼 ⋅ 𝑙 + 𝛽 ⋅ 𝑙1) (11)

o we have
𝛼 ⋅ 𝑡 + 𝛽 ⋅ 𝑡1
𝛼 ⋅ 𝑙 + 𝛽 ⋅ 𝑙1

≤ 2.5 ⋅𝐻(𝑚 ⋅ 𝑛) (12)

Therefore, the KPBP algorithm can obtain 2.5 ⋅𝐻(𝑚 ⋅ 𝑛)-approximation
for upgrading switches and servers. □

Theorem 7. The total time complexity of the KPBP algorithm is 𝑂(|𝑉 |

2 ⋅
|𝐹 ′

| ⋅ |𝛤 | + |𝑆| ⋅ |𝑉 |).

Proof. Our proposed KPBP has two main steps. The time complexity
of Line 3–6 in Algorithm 1 is 𝑂(|𝑉 | ⋅ | ′

|) in the first step. In Line 7–14,
KPBP runs at most |𝑉 | iterations. Note that, the time complexity of the
KP algorithm is 𝑂(|𝛤 | ⋅ log |𝛤 |), where |𝛤 | is the number of requests.
Thus, in each iteration, it takes KPBP 𝑂(|𝛤 | ⋅ log |𝛤 |) to compute profit.
After that, KPBP selects a switch with the maximum profit in 𝑂(|𝑉 |)
time complexity. At the end of each iteration in the first step, KPBP
takes 𝑂(|𝑉 | ⋅ | ′

| ⋅ |𝛤 |) to update the request set. Therefore, the time
complexity of the first step is 𝑂(|𝑉 |

2 ⋅ | ′
| ⋅ |𝛤 |). In addition, the KPBP

algorithm takes 𝑂(|𝑆| ⋅ |𝑉 |) time complexity to determine the set of
servers that will be upgraded in the second step. In conclusion, the total
time complexity of KPBP is 𝑂(|𝑉 |

2 ⋅ | ′
| ⋅ |𝛤 | + |𝑆| ⋅ |𝑉 |). □
7

4.3. Extension to network function offloading and traffic scheduling

Once the programmable switches and SmartNICs are deployed, it
is hard to change their position. However, the set of NFs offloaded on
a programmable and traffic scheduling among these NFs can change
according to the current network workload. For example, at time
𝑡1, network address translation (NAT) is offloaded on programmable
switch 𝑣. Several hours later, load balancer (LB) is also offloaded
on this switch, so the set of NFs offloaded on programmable switch
𝑣 is changed from {NAT} to {NAT, LB}. In addition, traffic will be
scheduled to LB on switch 𝑣 for processing. In the following, we refer
to the changes in the set of NFs offloaded on a switch as NF offloading
changes for simplicity. NF offloading changes are mainly to cope with
traffic dynamics. In real network scenarios, network traffic changes
drastically over time and places [22,35], so NF offloading should be
dynamically changed to deal with traffic dynamics. To this end, we
present the NF offloading and traffic scheduling (NOTS) problem in
this section. When changing NF offloading, it is critical that NFs can be
added and removed without disrupting the service of programmable
switches. Fortunately, Xing et al. [36] have paved the way toward
runtime programmable switches by investigating the necessary building
blocks and proposing concrete designs for each of them. The core of
the NOTS problem is to determine: (1) which NFs will be offloaded
on a programmable switch; and (2) which requests will be scheduled
to each offloaded NFs. Let 𝑉 ′ be the programmable switch set. We
use the binary variable 𝑧𝑓𝑣 to indicate if NF with type 𝑓 is offloaded
on programmable switch 𝑣 or not. Besides, we 𝑤𝑓𝑣,𝛾 to denote whether
request 𝛾 is scheduled to the NF with type 𝑓 on programmable switch
𝑣 or not. The other notations used in the NOTS problem have been
introduced in Section 3. We formulate the NOTS problem as follows:

max
∑

𝛾∈𝛤

∑

𝑓∈𝛾

∑

𝑣∈𝑉 ′
𝑤𝑓𝑣,𝛾 ⋅ 𝜃𝛾

𝑆.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

𝑣∈𝑉 ′
𝑤𝑓𝑣,𝛾 ≤ 1, ∀𝛾 ∈ 𝛤 , 𝑓 ∈  ′

𝛾

𝑧𝑓𝑣 ≥ 𝑤𝑓𝑣,𝛾 , ∀𝑣 ∈ 𝑉 ′, 𝛾 ∈ 𝛤 , 𝑓 ∈  ′

∑

𝑓∈ ′
𝑧𝑓𝑣 ⋅ 𝛿𝑓𝑣 ≤ 𝐶𝑣, ∀𝑣 ∈ 𝑉 ′

∑

𝑣∈𝑆𝑣

∑

𝑓∈ ′
𝑧𝑓𝑣 ⋅ 𝜙𝑓 ≤ 𝐶𝑠, ∀𝑠 ∈ 𝑆′

∑

𝛾∈𝛤∶𝑓∈𝛾

𝜃𝛾 ⋅𝑤
𝑓
𝑣,𝛾 ≤ 𝐶𝑓𝑣 , ∀𝑣 ∈ 𝑉 ′, 𝑓 ∈  ′

𝑧𝑓𝑣 , 𝑤
𝑓
𝑣,𝛾 ∈ {0, 1}, ∀𝑠, 𝑣, 𝛾, 𝑓

(13)

The first inequality set denotes that whether request 𝛾 will be handled
by NF with type 𝑓 on programmable switch 𝑣 or not. The second
inequality set indicates that request 𝛾 can be handled by NF 𝑓 ∈ 
on programmable switch 𝑣 ∈ 𝑉 ′ if and only if network function 𝑓 is
offloaded on programmable switch 𝑣 ∈ 𝑉 ′. The third inequality set
denotes the computing resource constraints on programmable switches.
The fourth inequality set means the memory resource capacity con-
straints on servers. The fifth set of inequalities expresses that the load
of each NF on programmable switches does not exceed the processing
capacity 𝐶𝑓𝑣 . Our objective is to maximize the overall traffic handled
by programmable switches, i.e., max

∑

𝛾∈𝛤
∑

𝑓∈𝛾
∑

𝑣∈𝑉 ′ 𝑤𝑓𝑣,𝛾 ⋅ 𝜃𝛾 .
We propose a rounding-based NF Offloading and traffic scheduling

(RBNS) algorithm to solve this problem. This algorithm mainly consists
of two steps. The RBNS algorithm relax the variables 𝑧𝑓𝑣 and 𝑤𝑓𝑣,𝛾 in
Eq. (13) to be fractional in the first step. It means that the NFs can be
deployed partially, and the traffic of each request 𝛾 can be arbitrarily
distributed on multiple NFs. Since the relaxed Eq. (13) is a linear
program, a linear program solver, e.g., Gurobi [37] can be adopted to
solve it in polynomial time. Assume that the optimal solutions for the
relaxed Eq. (13) are denoted by {𝑧𝑓 } and {𝑤̃𝑓 }. We obtain integer
𝑣 𝑣,𝛾

Computer Networks 239 (2024) 110163H. Tu et al.

i
w
t
𝑓

N

r
𝐶
o
r

𝜛

a
o
s

a
c
r
c
d

5

m
l

solutions {𝑧̂𝑓𝑣 } through the randomized rounding method [38]. That
s, we set 𝑧̂𝑓𝑣 = 1 with probability 𝑧𝑓𝑣 . If 𝑧̂𝑓𝑣 = 1, we offload NF
ith type 𝑓 on switch 𝑣. In the second step, for each NF type in 𝐹 ′,

he RBNS algorithm sets 𝑧̂𝑓𝑣 to 1 with probability {𝑧𝑓𝑣 }. Then, for NF
∈ 𝐹 ′

𝛾 required by request 𝛾, the RBNS algorithm chooses a unique

F on programmable switch 𝑣 with probability 𝑤̃𝑓𝑣,𝛾
𝑧𝑓𝑣

to satisfy the SFC
requirement of each request. The RBNS algorithm is formally described
in Algorithm 3.

Algorithm 3 RBNS: Rounding-based NF Offloading and Traffic
Scheduling Algorithm
1: Step 1: Solving the Relaxed Problem
2: Construct a linear program by replacing with 𝑧𝑓𝑣 , 𝑤𝑓𝑣,𝛾 ∈ [0, 1] in Eq.

(13)
3: Obtain the optimal solutions {𝑧𝑓𝑣 } and {𝑤̃𝑓𝑣,𝛾}
4: Step 2: Offloading NFs on Programmable Switches
5: Derive integer solutions 𝑧̂𝑓𝑣 by randomized rounding method
6: for programmable switch 𝑣 ∈ 𝑉 ′ do
7: for each NF type 𝑓 ∈  ′ do
8: Set 𝑧̂𝑓𝑣 = 1 with probability 𝑧𝑓𝑣
9: if 𝑧̂𝑓𝑣 = 1 then

10: Offload NF with type 𝑓 on switch 𝑣
11: end if
12: end for
13: end for
14: Let 𝑉 ′

𝑓 be the set of programmable switches on which NF with type
𝑓 ∈  ′ is offloaded

15: for each request 𝛾 ∈ 𝛤 do
16: for each NF type 𝑓 ∈  ′

𝛾 do

17: Set 𝑤̂𝑓𝑣,𝛾 = 1 with probability 𝑤̃𝑓𝑣,𝛾
𝑧𝑓𝑣

, where 𝑣 ∈ 𝑉 ′
𝑓

18: if 𝑤̂𝑓𝑣,𝛾 = 1 then
19: request 𝛾 is processed by NF with type 𝑓 offloaded on

programmable switch 𝑣
20: end if
21: end for
22: end for

For the convenience of approximate ratio analysis, the minimum
esource of servers and programmable switches are denoted as 𝐶𝑚𝑖𝑛𝑠 and
𝑚𝑖𝑛
𝑣 , respectively. Besides, let 𝐶𝑚𝑖𝑛𝑠,𝑓 and 𝐶𝑚𝑖𝑛𝑣,𝑓 be the minimum capacity
f NF with type 𝑓 placed on server 𝑠 and programmable switch 𝑣,
espectively. Then a constant value is defined as follows:

= min

{

𝐶𝑚𝑖𝑛𝑣

𝛿𝑓𝑣
,
𝐶𝑚𝑖𝑛𝑣,𝑓

𝜃𝛾
,∀𝑓 ∈  ′, 𝑣 ∈ 𝑉 ′, 𝛾 ∈ 𝛤

}

(14)

Similar to the approximation analysis in [39,40], the following
pproximation factors of the RBNS algorithm can be obtained. When
ffloading NFs on programmable switches, the resource capacity con-
traints on programmable switches will hardly be violated by 2 log |𝑉 ′

|

𝜛 +
3. Besides, the processing capacity constraints of NFs offloaded on
programmable switches will hardly be violated by a factor of 2 log |𝑉 ′

|

𝜛 +3.
It means that the algorithm can achieve the optimal solution, violating
the resource capacity of programmable switches and the processing
capacity of NFs by at most a factor 2 log |𝑉 ′

|

𝜛 + 3 at most, which is
lso known as bi-criteria approximation [41]. To avoid the network
ongestion, the traffic controlling method can be adopted to limit each
equest’s intensity. Moreover, similar to [42–44], the bound of RBNS
an be tightened to 2 in practice. Due to limited space, we omit the
etail of the proofs here.

. Performance evaluation

We first introduce simulation settings, benchmarks, and perfor-
ance metrics in Section 5.1. Then we present the large-scale simu-

ation results in Section 5.2.
8

5.1. Evaluation methodology

5.1.1. Simulation settings
In the simulations, we select three typical and practical topologies as

running examples. The first one is Fat-Tree [45], which consists of 128
servers and 80 switches (including 32 aggregation switches, 32 edge
switches, and 16 core switches). The second one is VL2 [46], which
consists of 245 servers and 70 switches. The third one is a campus
network topology from Monash university [22,47], which consists of
200 servers and 100 switches. These three topologies represent various
networks with different characteristics. Specifically, Fat-Tree and VL2
are for data centers and Monash topology is for campus networks.
Meanwhile, Fat-Tree is a three-tier architecture design, while VL2 is
a two-tier architecture design. For all these topologies, the data traces
of Alibaba Cluster [48] are adopted to generate requests. Since there is
no SFC information in the data traces, we generate the SFC requirement
of each request according to the real SFCs [6,49,50]. There are seven
NFs, Load Balancer (LB), Firewall (FW), Traffic Monitor (TM), Router,
Intrusion Detection System (IDS), VPN gateway, and Network Address
Translation (NAT). According to the previous works [6,49,50], we set
five real SFCs (i.e., 𝐹𝑊 −𝐿𝐵, 𝐼𝐷𝑆−𝐹𝑊 −𝑁𝐴𝑇 −𝑅𝑜𝑢𝑡𝑒𝑟, 𝑉 𝑃𝑁−𝑇𝑀−
𝐹𝑊 −𝐿𝐵, 𝐼𝐷𝑆−𝑇𝑀−𝐿𝐵,𝑁𝐴𝑇 −𝐹𝑊 −𝐼𝐷𝑆−𝑉 𝑃𝑁) and each request
will be assigned with one of these real SFCs. The network operator
deploys programmable switches and SmartNICs to accelerate traffic
processing. We set the prices of a programmable switch and a SmartNIC
as $7500 [51] and $2738 [52], respectively. Similar to [6], we set
the resource capacity of switches: each programmable switch has 6400
action units and 46.25 MB SRAM. An NF consumes 1000 ∼ 1500 action
units and 6 ∼ 12 MB SRAM [6]. Moreover, the memory consumption
of an NF on a server is set to 343 ∼ 525 MB [8]. The memory resources
reserved by a server for programmable switches are set to 100 GB.
Besides, the system throughput of a programmable switch is set to 3.2
Tbps [11].

5.1.2. Benchmarks
The proposed network upgrade algorithm is compared with the

other two benchmarks. The first one, adopted from [14], is to upgrade
networks by only deploying programmable switches (ODPS) without
memory expansion on external servers. Different from the KPBP algo-
rithm, when upgrading the network, ODPS does not consider expanding
programmable switches’ memory space through RDMA technology sup-
ported by SmartNICs. Thus, in the case of processing all SFC requests,
due to the limited memory resources of programmable switches, ODPS
has to deploy a lot of programmable switches to process all the requests,
resulting in a high upgrade cost. Moreover, in the case of fixed upgrade
cost, the throughput of KPBP is much higher than that of ODPS.

The second benchmark upgrades the network by deploying pro-
grammable switches and configuring SmartNICs for commodity servers,
which is similar to KPBP. Since there is currently no work that solves
exactly the same problem proposed in this paper, we obtain this bench-
mark based on the modification of TEA [8]. For simplicity, this bench-
mark is denoted as TEA. In this method, the network upgrade process
consists of the following two steps. First, it replaces the legacy switches
with programmable switches. Second, for each deployed programmable
switch, it selects the closest server to configure a SmartNIC as an
external server for memory expansion. The difference between TEA and
KPBP is that the external server provides memory expansion for only
one programmable switch in the TEA method. Thus, when processing
all SFC requests, this upgrade cost is slightly higher than that of KPBP.

5.1.3. Performance metrics
We adopt the following four metrics to evaluate the effectiveness

of the proposed algorithm. (1) The upgrade cost. To process all the
requests with SFC requirements in the network, more programmable
switches and SmartNICs should be deployed when the number of

requests increases. We record the total price of deployed programmable

Computer Networks 239 (2024) 110163H. Tu et al.
Fig. 2. Upgrade Cost vs. No. of Requests.
Fig. 3. Upgrade Cost vs. Offloading Proportion.
switches and SmartNICs as the upgrade cost. (2) The system through-
put. After the network has been upgraded, NFs can be offloaded on
the newly deployed programmable devices. We measure the maximum
throughput that the offloaded NFs on programmable switches can sup-
port as the system throughput. (3) The programmable switch utilization
(PSU). We divide the actual throughput of a programmable switch by
its throughput capacity as the programmable switch utilization. High
PSU means that the computing resources of programmable switches
are fully utilized. (4) The SmartNIC utilization. Programmable switches
access external servers’ memory through SmartNICs. The utilization of
a SmartNIC is the throughput of the SmartNIC divided by the maximum
throughput. Low SmartNIC utilization means a waste of resources.
The former two metrics describe the network upgrade cost and the
throughput of the overall system, and the last two metrics reflect the
resource utilization of the upgraded network.

5.2. Simulation results

Main observations. From our simulations, we can make the following
conclusions. First, KPBP can reduce the upgrade cost by about 70.47%
and 26.32%, respectively, compared with ODPS and TEA, while pre-
serving the same system throughput. Second, given the same upgrade
cost, KPBP outperforms ODPS and TEA by up to 808.19% and 82.86%,
respectively, in the system throughput. Third, the KPBP algorithm can
achieve similar programmable switch utilization as TEA, and improve
the programmable switch utilization by about 87% compared with
ODPS. Fourth, KPBP can improve the SmartNIC utilization by about
24% compared with TEA.

Upgrade cost. Figs. 2–3 exhibit the simulation results of the up-
grade cost. We generate real SFC requirements for each request, and
all requests should be processed by NFs offloaded on programmable
switches. Then we investigate the upgrade cost through adjusting the
total number of requests. The results in Fig. 2 show that the upgrade
cost increases with more and more requests for all algorithms. Besides,
we see that the upgrade cost of our KPBP method is much less than
those of ODPS and TEA. For instance, when there are 50𝐾 requests for
VL2 topology in the right plot of Fig. 2, the upgrade costs of ODPS,
TEA, and KPBP are 15.07×105, 6.04×105 and 4.45×105, respectively. It
9

means that, compared with ODPS and TEA, KPBP reduces the upgrade
cost by 70.47% and 26.32%, respectively.

We define the offloading proportion as the proportion of NFs that
are offloaded on programmable switches. Network operators probably
cannot offload all the NFs, since some NFs are too complex to be
offloaded on programmable switches or the upgrade cost is limited.
For this scenario, we investigate how offloading proportion affects
the upgrade cost given 40𝐾 requests in Fig. 3. The results show that
KPBP can reduce upgrade cost by 71.11% and 26.36% compared with
ODPS and TEA, respectively, given the same offloading proportion. In
conclusion, KPBP outperforms ODPS and TEA in upgrade cost. That is
because ODPS needs to deploy more programmable switches to handle
all the requests and TEA spends more money on purchasing SmartNIC,
which leads to higher network upgrade costs.

System throughput. We then investigate how the upgrade cost affects
the system throughput given 40𝐾 requests. From the simulation results
in Fig. 4, we see that the system throughputs of KPBP, ODPS and TEA
increase with more upgrade cost. Besides, the system throughput of
KPBP is always higher than those of ODPS and TEA. For instance,
when the upgrade cost is 50 × 104 for Fat-Tree topology, as shown
in the left plot of Fig. 4, the system throughputs of KPBP, TEA and
ODPS are 151.93 Tbps, 82.63 Tbps and 15.50 Tbps, respectively. It
illustrates that KPBP can improve system throughput by 82.86% and
808.19%, respectively, compared with TEA and ODPS. In Fig. 5, we
investigate how the number of requests affects the system throughput
given a fixed upgrade cost (e.g., 50 × 104). We observe that the system
throughput increases with more and more requests, and then flattens
when the number of requests exceeds a certain value, such as 30𝐾
in VL2 topology, as the processing power of programmable switches
is close to saturation. Similar to Fig. 4, KPBP also performs better
than ODPS and TEA in terms of system throughput in Fig. 5. The
reason is that KPBP can make full use of the computing power of
programmable switches with memory expansion compared with ODPS.
In addition, since our network upgrade method enables a server to pro-
vide memory expansion for multiple switches, KPBP can purchase more
programmable switches to improve the system throughput compared
with TEA, given a fixed upgrade cost.

Programmable switch utilization. Given the upgrade cost of 50×104,
Fig. 6 shows the programmable switch utilization (PSU) performance.

Computer Networks 239 (2024) 110163H. Tu et al.
Fig. 4. System Throughput vs. Upgrade Cost.
Fig. 5. System Throughput vs. No. of Requests.
Fig. 6. Programmable Switch Utilization (PSU) vs. No. of Requests.
Fig. 7. SmartNIC Utilization vs. No. of Requests.
i
m

From the simulation results, we observe that the programmable switch
utilization of KPBP is similar to that of TEA and greater than that
of ODPS. For instance, given 34𝐾 requests for VL2 topology, the
programmable switch utilization of KPBP, TEA, and ODPS is 91.21%,
97.47%, and 10.15%, respectively. It means that KPBP can achieve sim-
ilar programmable switch utilization with TEA, and the programmable
switch utilization gap between KPBP and TEA is around 6%. The main
reason is that both KPBP and TEA enable programmable switches
to access external memory resources so that programmable switches’
computing power is fully utilized, thus improving the utilization of pro-
10

grammable switches. Since OPDS does not consider the limited memory a
resources of programmable switches, it has much lower programmable
switch utilization compared with KPBP and TEA.

SmartNIC utilization. We investigate the SmartNIC utilization of KPBP
and TEA under 50 × 104$ upgrade cost in Fig. 7. Since ODPS does
not adopt SmartNIC and servers to expand the memory capacity of
programmable switches, this set of simulations does not include the
SmartNIC utilization of ODPS. We observe that the SmartNIC utilization
of KPBP is always higher than that of TEA. For example, the SmartNIC
utilization gap between KPBP and TEA is 24.16% given 42𝐾 requests
n Fat-Tree topology. KPBP supports a server with SmartNIC to provide
emory expansion for multiple programmable switches, whereas TEA

ssumes that a server’s resources are monopolized by a programmable

Computer Networks 239 (2024) 110163H. Tu et al.

s
T

A
o
a
s
m
l
n

Fig. 8. Execution Time vs. No. of Requests.
v
C

witch. Thus, the SmartNIC utilization of KPBP is higher than that of
EA.

lgorithm execution time. Fig. 8 shows the algorithm execution time
f the proposed method and benchmarks. The results are collected from
desktop carrying an Intel i5-9256 CPU with 8 GB memory. From this

imulation, we can see that the execution time increases with more and
ore requests in the network. Although the execution time of KPBP is

onger than those of the comparison methods, KPBP can still give the
etwork upgrade scheme in 0.3 s, given 60𝐾 requests. Moreover, KPBP

outperforms ODPS and TEA in upgrade cost and throughput.

6. Related works

With the help of programming protocol-independent packet proces-
sors (P4) [53], apart from switch’s initial functionalities like packet
forwarding, programmable switches also support additional functions
and packet processing details.

Since programmable switch has the advantages of low processing
delay and high throughput, offloading NFs on programmable switches
has attracted plenty of researchers. For example, Chen et al. [6] pro-
pose a novel system called LightNF, which facilitates NF offloading
on programmable switches. It supports automatica decomposition of
NF features (e.g., NF performance behaviors) by performance profiling
and code analysis whithout manual efforts. To generate the optimal
performance offloading, it also utilize the analyzed NF features in
SFC placement. Zhao et al. [9] present Flexible Network Function
(FlexNF), which enables NF orchestration in fine-grained granularity
on the programmable data plane to satisfy the dynamic demands
of service function chain. For flexible NF orchestration, they pro-
pose an NF selection method that use the pipeline re-enter operation
and labels supported by programmable switches to enable selective
serving mechanism. Then they propose a service path construction
algorithm based on two-stage method to realize on-path service and
also achieve load balancing among links. To defend volumetric DDoS
attacks, Liu et al. [10] design and implement a switch-native called
Japen, which can run mitigation functions and detection totally inline
on programmable switches and does not involve additional hardware
in the data plane. To construct defense tactics that utilize switch
capabilities with effect, they devise resource-efficient, switch-optimized
detection and mitigation based on building blocks. Zhang et al. [14]
design a switch-native load balancer called LBAS, which considers
application server states. Without violating per-connection consistency,
LBAS can store a huge number of connections with limited store space
in the data plane. Moreover, to reduce the processing delay on applica-
tion servers, with the help of the Ridge Regression theory, the authors
design a partial dynamic weighting algorithm. Huang et al. [54] build
a framework called HyperSFP to configure fault-tolerance service func-
tion chains on programmable switches. To mitigate the impact of
failures in the data plane, they propose to place the active and backup
network functions. When a switch failure is detected, the controller
updates the forwarding rules in the routing table so that the traffic will
be migrated from the failed active NFs to the backup ones.
11
However, the above works mainly focus on the implementation
and configuration of NFs. They all assume that the network has been
equipped with programmable switches. Only a few works consider
the network upgrade problem. For example, Liu et al. [19] consider
constructing an NFV-enabled network by deploying only commod-
ity servers. They propose an incremental server deployment (INSD)
problem and prove that the optimal solution cannot be obtained in
polynomial time, and then design a approximate algorithm to solve
it. Since they aims at the scenario of NFV-enabled networks, their
method cannot be applied to construct a programmable network. Xue
et al. [16] study the problem of transiting homogeneous NFV net-
works to the heterogeneous ones, in which both commodity servers
and programmable switches can run NFs. They model this problem
as an integer linear programming with the optimization objective of
minimizing the total upgrade cost, then propose a two-step method
to solve it. Nevertheless, it is hard to offload memory-intensive NFs
on programmable switches, due to the limited memory resources. A
promising way to expand memory is using the external servers’ memory
resources, which is proposed by TEA [8]. Specifically, TEA provides
table abstraction for status stored across both external DRAM and
local SRAM. With the help of this abstraction technique, stateful NFs
offloaded on programmable switches can use 5-tuple of an data packet
to look up status. The corresponding status can be found either from
the remote DRAM or local SRAM using RDMA technique based on
SmartNIC. TEA will prioritize lookup request and defer the processing
of the packet when it accesses DRAM. This process will not block the
processing of other packets in the pipeline. When the DRAM lookup
completes, TEA will resume the processing of defered packet. Although
Kim et al. [8] propose TEA to extend programmable switch’s memory
capacity, they do not present how to cost-efficiently upgrade networks
for this method. To achieve efficient NF offloading, we consider deploy
programmable switches and SmartNICs with minimal network upgrade
cost so that NFs can be offloaded on programmable switches with
external memory expansion.

7. Conclusion

In this work, we investigate the problem of upgrading networks by
replacing legacy switches and equipping servers with SmartNICs so that
NFs can be offloaded on programmable switches efficiently. To solve
this problem, we design an efficient algorithm with an approximation
ratio of 2.5⋅𝐻(𝑚⋅𝑛), where 𝑛 is the maximum number of requests passing
through a programmable switch, and 𝑚 is the number of NF’s types. The
simulation results show that our solution can reduce the upgrade cost
by about 70% compared with baselines.

CRediT authorship contribution statement

Huaqing Tu: Conceptualization, Methodology, Validation, Writ-
ing – original draft. Gongming Zhao: Formal analysis, Writing – re-
iew & editing. Hongli Xu: Methodology, Writing – review & editing.
hunming Qiao: Writing – review & editing.

Computer Networks 239 (2024) 110163H. Tu et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The corresponding author of this paper is Gongming Zhao. This
work was supported by the National Key Research and Development
Project of China (No. 2022YFB2901503), the National Science Founda-
tion of China (No. 62372426, No. 62102392 and No. U22A2005), the
National Science Foundation of Jiangsu Province (No. BK20210121),
the Hefei Municipal Natural Science Foundation (No. 2022013), the
Key Research Project of Zhejiang Lab (No. 2021LE0AC02), the Youth
Innovation Promotion Association of Chinese Academy of Sciences
(No. 2023481), and the Fundamental Research Funds for the Central
Universities.

References

[1] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,
S. Shenker, ResQ: Enabling SLOs in network function virtualization, in: 15th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
18, 2018, pp. 283–297.

[2] J.G. Herrera, J.F. Botero, Resource allocation in NFV: A comprehensive survey,
IEEE Trans. Netw. Serv. Manag. 13 (3) (2016) 518–532.

[3] A.A. Barakabitze, A. Ahmad, R. Mijumbi, A. Hines, 5G network slicing using SDN
and NFV: A survey of taxonomy, architectures and future challenges, Comput.
Netw. 167 (2020) 106984.

[4] I. Alam, K. Sharif, F. Li, Z. Latif, M.M. Karim, S. Biswas, B. Nour, Y. Wang, A
survey of network virtualization techniques for internet of things using sdn and
nfv, ACM Comput. Surv. 53 (2) (2020) 1–40.

[5] H. Tu, G. Zhao, H. Xu, Y. Zhao, Y. Qiu, L. Huang, RoNS: Robust network function
services in clouds, Comput. Netw. 215 (2022) 109212.

[6] X. Chen, Q. Huang, P. Wang, Z. Meng, H. Liu, Y. Chen, D. Zhang, H. Zhou, B.
Zhou, C. Wu, LightNF: Simplifying network function offloading in programmable
networks, in: 2021 IEEE/ACM 29th International Symposium on Quality of
Service, IWQOS, IEEE, 2021, pp. 1–10.

[7] X. Ge, Y. Liu, D.H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, X. Hu, OpenANFV:
Accelerating network function virtualization with a consolidated framework in
openstack, ACM SIGCOMM Comput. Commun. Rev. 44 (4) (2014) 353–354.

[8] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, S. Seshan, Tea: Enabling state-
intensive network functions on programmable switches, in: Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer
Communication, 2020, pp. 90–106.

[9] H. Zhao, Q. Li, J. Duan, Y. Jiang, K. Liu, FlexNF: Flexible network function
orchestration on the programmable data plane, in: 2021 IEEE/ACM 29th
International Symposium on Quality of Service, IWQOS, IEEE, 2021, pp. 1–6.

[10] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braverman, M.
Yu, V. Sekar, Jaqen: A high-performance switch-native approach for detecting
and mitigating volumetric ddos attacks with programmable switches, in: 30th
USENIX Security Symposium, USENIX Security 21, 2021, pp. 3829–3846.

[11] Wedge 100B Series of Switches, URL https://people.ucsc.edu/~warner/Bufs/
Barefoot%20Wedge%20100B%20OCP%20Spec-prt.pdf.

[12] Edgecore Wedge 100BF-32X, URL https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&id=335.

[13] D.E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher, A.
Cilingiroglu, B. Cheyney, W. Shang, J.D. Hosein, Maglev: A fast and reliable
software network load balancer, in: 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 16, 2016, pp. 523–535.

[14] J. Zhang, S. Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang, Y. Liu, F.R. Yu,
Fast switch-based load balancer considering application server states, IEEE/ACM
Trans. Netw. 28 (3) (2020) 1391–1404.

[15] M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kostić, M. Chiesa, A
high-speed stateful packet processing approach for tbps programmable switches,
in: 20th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 23, 2023, pp. 1237–1255.

[16] Y. Xue, Z. Zhu, On the upgrade of service function chains with heterogeneous
NFV platforms, IEEE Trans. Netw. Serv. Manag. 18 (4) (2021) 4311–4323.
12
[17] M. Kablan, A. Alsudais, E. Keller, F. Le, Stateless network functions: Breaking
the tight coupling of state and processing, in: 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 17, 2017, pp. 97–112.

[18] D. Kim, J. Nelson, D.R. Ports, V. Sekar, S. Seshan, Redplane: Enabling fault-
tolerant stateful in-switch applications, in: Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 223–244.

[19] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, L. Huang, Incremental server deployment
for scalable NFV-enabled networks, in: IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, IEEE, 2020, pp. 2361–2370.

[20] Z. Zeng, L. Cui, M. Qian, Z. Zhang, K. Wei, A survey on sliding window sketch
for network measurement, Comput. Netw. 226 (2023) 109696.

[21] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, X. Luo, Programmable in-network
security for context-aware BYOD policies, in: 29th USENIX Security Symposium,
USENIX Security 20, 2020, pp. 595–612.

[22] X. Fan, H. Xu, H. Huang, X. Yang, Real-time update of joint SFC and routing in
software defined networks, IEEE/ACM Trans. Netw. 29 (6) (2021) 2664–2677.

[23] T. Lukovszki, M. Rost, S. Schmid, It’s a match! near-optimal and incremental
middlebox deployment, ACM SIGCOMM Comput. Commun. Rev. 46 (1) (2016)
30–36.

[24] V. Eramo, E. Miucci, M. Ammar, F.G. Lavacca, An approach for service function
chain routing and virtual function network instance migration in network
function virtualization architectures, IEEE/ACM Trans. Netw. 25 (4) (2017)
2008–2025.

[25] A. Gushchin, A. Walid, A. Tang, Scalable routing in SDN-enabled networks with
consolidated middleboxes, in: Proceedings of the 2015 ACM SIGCOMM Workshop
on Hot Topics in Middleboxes and Network Function Virtualization, 2015, pp.
55–60.

[26] E.F. Kfoury, J. Crichigno, E. Bou-Harb, An exhaustive survey on p4 pro-
grammable data plane switches: Taxonomy, applications, challenges, and future
trends, IEEE Access 9 (2021) 87094–87155.

[27] C. Gao, X. Yao, T. Weise, J. Li, An efficient local search heuristic with row
weighting for the unicost set covering problem, European J. Oper. Res. 246 (3)
(2015) 750–761.

[28] U. Feige, A threshold of ln n for approximating set cover, J. ACM 45 (4) (1998)
634–652.

[29] R. Raz, S. Safra, A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP, in: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, 1997, pp.
475–484.

[30] S.M. Marcus, Acoustic determinants of perceptual center (P-center) location,
Percept. Psychophys. 30 (3) (1981) 247–256.

[31] O.H. Ibarra, C.E. Kim, Fast approximation algorithms for the knapsack and sum
of subset problems, J. ACM 22 (4) (1975) 463–468.

[32] S. Sahni, Approximate algorithms for the 0/1 knapsack problem, J. ACM 22 (1)
(1975) 115–124.

[33] A. Gupta, M. Pál, R. Ravi, A. Sinha, What about Wednesday? Approximation
algorithms for multistage stochastic optimization, in: Approximation, Random-
ization and Combinatorial Optimization. Algorithms and Techniques, Springer,
2005, pp. 86–98.

[34] D.S. Johnson, Near-Optimal Bin Packing Algorithms (Ph.D. thesis), Massachusetts
Institute of Technology, 1973.

[35] J. Pei, P. Hong, M. Pan, J. Liu, J. Zhou, Optimal VNF placement via deep rein-
forcement learning in SDN/NFV-enabled networks, IEEE J. Sel. Areas Commun.
38 (2) (2019) 263–278.

[36] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy, A. Chen,
Runtime programmable switches, in: 19th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 22, 2022, pp. 651–665.

[37] R. Anand, D. Aggarwal, V. Kumar, A comparative analysis of optimization
solvers, J. Stat. Manag. Syst. 20 (4) (2017) 623–635.

[38] P. Raghavan, C.D. Tompson, Randomized rounding: a technique for provably
good algorithms and algorithmic proofs, Combinatorica 7 (4) (1987) 365–374.

[39] H. Tu, G. Zhao, H. Xu, Y. Zhao, Y. Zhai, A robustness-aware real-time SFC routing
update scheme in multi-tenant clouds, IEEE/ACM Trans. Netw. (2022).

[40] H. Tu, G. Zhao, H. Xu, Y. Zhao, Y. Zhai, Robustness-aware real-time sfc routing
update in multi-tenant clouds, in: 2021 IEEE/ACM 29th International Symposium
on Quality of Service, IWQOS, IEEE, 2021, pp. 1–6.

[41] R. Cohen, L. Lewin-Eytan, J.S. Naor, D. Raz, On the effect of forwarding table
size on SDN network utilization, in: IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, IEEE, 2014, pp. 1734–1742.

[42] G. Zhao, H. Xu, J. Liu, C. Qian, J. Ge, L. Huang, Safe-me: Scalable and flexible
middlebox policy enforcement with software defined networking, in: 2019 IEEE
27th International Conference on Network Protocols, ICNP, IEEE, 2019, pp. 1–11.

[43] J. Wang, G. Zhao, H. Xu, Y. Zhai, Q. Zhang, H. Huang, Y. Yang, A robust service
mapping scheme for multi-tenant clouds, IEEE/ACM Trans. Netw. (2021).

[44] D. Feldman, A. Fiat, M. Sharir, D. Segev, Bi-criteria linear-time approximations
for generalized k-mean/median/center, in: Proceedings of the Twenty-Third
Annual Symposium on Computational Geometry, 2007, pp. 19–26.

[45] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network
architecture, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 63–74.

[46] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, S. Sengupta, VL2: A scalable and flexible data center network, in:
Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication,

2009, pp. 51–62.

http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb10
https://people.ucsc.edu/~warner/Bufs/Barefoot%20Wedge%20100B%20OCP%20Spec-prt.pdf
https://people.ucsc.edu/~warner/Bufs/Barefoot%20Wedge%20100B%20OCP%20Spec-prt.pdf
https://people.ucsc.edu/~warner/Bufs/Barefoot%20Wedge%20100B%20OCP%20Spec-prt.pdf
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb14
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb14
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb14
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb14
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb14
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb31
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb31
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb31
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb34
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb34
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb34
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb37
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb37
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb37
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb39
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb39
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb39
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb42
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb42
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb42
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb42
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb42
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb43
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb43
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb43
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb46

Computer Networks 239 (2024) 110163H. Tu et al.
[47] H. Song, S. Guo, P. Li, G. Liu, FCNR: fast and consistent network reconfiguration
with low latency for SDN, Comput. Netw. 193 (2021) 108113.

[48] Alibaba cluster data trace, URL https://github.com/alibaba/clusterdata.
[49] C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu, NFP: Enabling network function parallelism

in NFV, in: Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 43–56.

[50] X. Chen, D. Zhang, X. Wang, K. Zhu, H. Zhou, P4SC: Towards high-performance
service function chain implementation on the P4-capable device, in: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management, IM, IEEE,
2019, pp. 1–9.

[51] Barefoot Tofino, URL https://bm-switch.com/index.php/netberg-aurora710-
100g-bms.html.

[52] SmartNIC, URL https://itprice.com/cisco-gpl/smartnic.
[53] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.

Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., P4: Programming
protocol-independent packet processors, ACM SIGCOMM Comput. Commun. Rev.
44 (3) (2014) 87–95.

[54] H. Huang, W. Wu, HyperSFP: Fault-tolerant service function chain provision on
programmable switches in data centers, in: NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium, IEEE, 2022, pp. 1–9.

Huaqing Tu received the Ph.D. degree in computer sci-
ence at the University of Science and Technology of
China in 2023. She is currently a postdoctoral fellow
with Zhejiang Lab in China. Her main research interests
are software-defined networks, programmable networks and
cloud computing.

Gongming Zhao received the Ph.D. degree in computer
software and theory from the University of Science and
Technology of China in 2020. He is currently an As-
sociate Professor with the University of Science and
Technology of China. His current research interests include
software-defined networks and cloud computing.
13
Hongli Xu received the B.S. degree in computer science
and the Ph.D. degree in computer software and theory from
the University of Science and Technology of China in 2002
and 2007, respectively. He is currently a Professor with
the School of Computer Science and Technology, University
of Science and Technology of China. He has authored or
coauthored over 70 papers, and held about 30 patents.
His main research interest is software-defined networks,
cooperative communication, and vehicular ad hoc network.

Chunming Qiao (Fellow, IEEE) is a SUNY distinguished
professor and also the current chair of the Computer Science
and Engineering Department, University at Buffalo, Buffalo,
NY. He was elected to IEEE fellow for his contributions to
optical and wireless network architectures and protocols.
His current focus is on connected and autonomous vehicles.
He has published extensively with an h-index of more than
69. Two of his papers have received the best paper awards
from IEEE and Joint ACM/IEEE venues. He also has seven
US patents and served as a consultant for several IT and
Telecommunications companies since 2000. His research has
been funded by a dozen major IT and telecommunications
companies including Cisco and Google, and more than
a dozen NSF grants. He has chaired and co-chaired a
dozen of international conferences and workshops, and IEEE
Technical Committees and Subcommittee. He has served on
the editorial board for several leading IEEE journal. He was
elected to IEEE Fellow for his contributions to optical and
wireless network architectures and protocols.

http://refhub.elsevier.com/S1389-1286(23)00608-4/sb47
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb47
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb47
https://github.com/alibaba/clusterdata
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb50
https://bm-switch.com/index.php/netberg-aurora710-100g-bms.html
https://bm-switch.com/index.php/netberg-aurora710-100g-bms.html
https://bm-switch.com/index.php/netberg-aurora710-100g-bms.html
https://itprice.com/cisco-gpl/smartnic
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb53
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00608-4/sb54

	Programmable device deployment for efficient network function offloading
	Introduction
	Background and Motivation
	Comparison of NF Implementation Methods
	Limitations of Prior Works

	Preliminaries
	Network Model
	Problem Formulation

	Algorithm for Programmable Device Deployment
	Algorithm Description
	Performance Analysis for KPBP
	Extension to Network Function Offloading and Traffic Scheduling

	Performance Evaluation
	Evaluation Methodology
	Simulation Settings
	Benchmarks
	Performance Metrics

	Simulation Results

	Related Works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

